Parametrized numerical scheme for the Einstein equations
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولRe-formulating the Einstein equations for stable numerical simulations
We review recent efforts to re-formulate the Einstein equations for fully relativistic numerical simulations. The so-called numerical relativity (computational simulations in general relativity) is a promising research field matching with ongoing astrophysical observations such as gravitational wave astronomy. Many trials for longterm stable and accurate simulations of binary compact objects ha...
متن کاملHyperbolic tetrad formulation of the Einstein equations for numerical relativity
The tetrad-based equations for vacuum gravity published by Estabrook, Robinson, and Wahlquist are simplified and adapted for numerical relativity. We show that the evolution equations as partial differential equations for the Ricci rotation coefficients constitute a rather simple first-order symmetrizable hyperbolic system, not only for the Nester gauge condition on the acceleration and angular...
متن کاملA new numerical scheme for solving systems of integro-differential equations
This paper has been devoted to apply the Reconstruction of Variational Iteration Method (RVIM) to handle the systems of integro-differential equations. RVIM has been induced with Laplace transform from the variational iteration method (VIM) which was developed from the Inokuti method. Actually, RVIM overcome to shortcoming of VIM method to determine the Lagrange multiplier. So that, RVIM method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JSIAM Letters
سال: 2021
ISSN: ['1883-0609', '1883-0617']
DOI: https://doi.org/10.14495/jsiaml.13.13